报告题目:Cesàro summability of noncommutative Vilenkin-Fourier series
 报告人:赵甜甜 博士
 工作单位:哈尔滨工业大学
 报告时间:2025年01月21日 09:00-11:00
 报告地点:哈哈体育 305
 报告摘要:
 We study several noncommutative   asymmetric maximal inequalities for the Cesàro means  of the Vilenkin-like-Fourier series of functions in
 of the Vilenkin-like-Fourier series of functions in    , where
, where  is a Vilenkin space and
 is a Vilenkin space and  is a semifinite von Neumann algebra. Vilenkin-like   system is a common generalization of the Walsh system, Vilenkin system, the   character system of the group of 2-adic (m-adic) integers and other systems.   When focus on the Vilenkin system, we transfer the above inequalities into   totally noncommutative case for the Cesàro means
 is a semifinite von Neumann algebra. Vilenkin-like   system is a common generalization of the Walsh system, Vilenkin system, the   character system of the group of 2-adic (m-adic) integers and other systems.   When focus on the Vilenkin system, we transfer the above inequalities into   totally noncommutative case for the Cesàro means  of the noncommutative Vilenkin-Fourier series in the   hyperfinite
of the noncommutative Vilenkin-Fourier series in the   hyperfinite  factor
 factor  . The primary strategy in our proof is to explore a   noncommutative  generalization of  Sunouchi square function   operator, and the very recent advance of the noncommutative Calderón-Zygmund   decomposition established by Cadilhac, Conde-Alonso and Parcet.
. The primary strategy in our proof is to explore a   noncommutative  generalization of  Sunouchi square function   operator, and the very recent advance of the noncommutative Calderón-Zygmund   decomposition established by Cadilhac, Conde-Alonso and Parcet.
          This is a joint work with Yong Jiao, Sijie Luo and Dejian Zhou. 
 报告人简介:
 赵甜甜,博士,泛函分析与非交换分析方向。2023年毕业于中南大学数学与统计学院,导师为焦勇教授。现为哈尔滨工业大学数学研究院博士后。研究主要集中于泛函分析和非交换分析领域,具体包括算子值的调和分析问题和函数空间问题。
 欢迎广大师生莅临交流学习!